
 PAGE 1 OF 9 

DIAGRAM 1: DIFFERENCE BETWEEN TRADITIONAL, AGILE AND FEATURE FLAG DEVELOPMENT PROCESSES  

EXPLAINING FEATURE FLAG DEVOPS WITH DIAGRAMS 

Feature-based development and release cycles are becoming more 
common in cloud native software services (SaaS products), where 
continuous development and continuous improvement are 
important. 

Instead of the long development time needed to implement large 
changes in a software product, the development cycle for SaaS is 

shorter and more focused, even more so than the processes used by 
agile software development teams. 

The leaner and faster development process is underpinned by 
feature flags and releases small updates often. It incorporates user 
feedback constantly through built-in feedback loops that involve 
active and stakeholder customers.

 

  



 PAGE 2 OF 9 

DIAGRAM 2: HOW FEATURE FLAGS TOGGLE SOFTWARE FUNCTIONALITY FOR DIFFERENT USER GROUPS  

WHAT DO FEATURE FLAGS DO? 

Feature flags, also known as feature toggles or feature controls, give 
administrators and developers fine granular control over which 
features are available to specific customer segments, essentially 
extending development and testing into the operation and 
deployment of the software.  

With feature flags, you can more easily test updates with real users 
on live systems. You can also provide personalised features, enabling 
or disabling functionality for each customer segment to better meet 
their needs. 

 

  



 PAGE 3 OF 9 

DIAGRAM 4: COMMON TEAMS AND HOW THEY CAN USE FEATURE FLAGS  DIAGRAM 3: INCREMENTALLY DELIVER NEW FEATURES TO A PERCENTAGE OF USERS 

GRANULAR CONTROL AFTER DEPLOYMENT 

Feature flags allow you to target users in defined segments and customise how they can see and use your SaaS product. 

• Deploy but hide features that aren’t yet ready, test 
dependencies and prepare intertwined systems for future 
updates. 

• Separate frontend and backend by using one feature flag 
category for UI component visibility and another to control 
APIs and configurations. 

• Split test (A/B test) two versions of a feature or interface to 
see which is more popular with users. 

 

• Block users from accessing certain features. 

• Roll back an unstable update easily by disabling the 
problematic feature flag. 

• Allow users to opt-in to new features as they are released or 
opt-out and personalise which features they want to see. 

• Soft launch a new feature to a small group and progressively 
expand access using multivariate feature flags for ease of 
split testing, gathering feedback and mitigating risks.  

 

 

 

 

 

 
The reasons why feature flags are useful in many situations and for many different teams are clear. However, it’s a little harder to explain how 
the development structure must change. 

  



 PAGE 4 OF 9 

DIAGRAM 5: AN AGILE DEVELOPMENT GITFLOW USING FEATURE DEVELOPMENT BRANCHES, A NIGHTLY BUILD BRANCH AND RELEASE CANDIDATE BUILDS 

GITFLOWS TO VISUALISE DEVELOPMENT STRUCTURE 

In both agile and traditional software development, teams typically work on separate feature branches. Once the feature development is done, 
these branches are merged into a main development or nightly build branch. Before release, a candidate build needs to pass various tests, and 
then the software update is released to customers. 

Several new features or updates to fix bugs are usually combined into the one release, as you can see in the gitflow diagram below. 

 

 

 

 

 

 

 

 

 

SaaS and feature flag DevOps can use this git branching structure, but as each update contains a minimal number of features and bug-fixes, an 
extra branch just for that release adds too much overhead. Instead, development branches hang directly off the main release branch for a more 
streamlined development process.  



 PAGE 5 OF 9 

DIAGRAM 6: A STREAMLINED TRUNK-BASED SAAS AND FEATURE FLAG DEVOPS GITFLOW 

DIAGRAM 7: CALLOUTS USING LIST SHAPES ON RELEASES ARE THE CLEAREST WAY TO SHOW FEATURE FLAGS IN STATIC IMAGES  

 

 

 

 

 

Without indicating the feature flags that are applied to the deployed software, this gitflow shows only half of the story. 

With draw.io, there are many ways to show feature flags in a diagram - tags, tooltips, and shape metadata can be used to explain how feature 
flags apply to each release or development branch. Tags are particularly useful for training documentation, as you can interactively display or 
hide shapes with specific tags in the diagram and see how the functionality is affected when those feature flags are enabled or disabled on the 
deployed software. 

 

  

http://drawio.com/blog/gitflow-feature-flags.html


 PAGE 6 OF 9 

DIAGRAM 8: A UML CLASS DIAGRAM TO DEFINE THE DATA STRUCTURE IN A FEATURE FLAG SYSTEM 

IMPLEMENTING FEATURE FLAGS IN DEPLOYMENT AND DEVELOPMENT 

A feature flag system or feature toggle system works in two parts. One stores whether a feature is to be enabled or not, and the other part 
checks this flag configuration state whenever it is requested by the deployed system. If a feature is enabled for the customer currently using the 
system, allow whatever it is toggling. If it is disabled, hide it from the user. 

In the code, you need to define each feature flag and wrap its affected code segments with conditional statements. 

1. Define the feature flags in a single location.  

This could be in a well-structured XML file or in data 
structures in the code.   

Regularly delete any old feature flags that are no longer used 
to minimise the complexity of this file.  

2. During development, wrap necessary code sections in the 
feature flag conditional so they can be enabled or disabled 
via the control interface. Not every code change will require 
a feature flag.  

 

  

   if (featureFlag) { 

      // Run this code block if enabled 

      else { 

         // Run this code block if disabled 

      } 

   } 



 PAGE 7 OF 9 

DIAGRAM 9: A MOCKUP OF A CONTROL INTERFACE FOR FEATURE FLAGS ON DEPLOYED CLOUD SOFTWARE  

CONTROLLING AND TOGGLING FEATURES 

In the deployed system, a boolean check will decide whether a specific code segment is to be executed or not. You’ll need an accessible way to 
control which feature flags are enabled and disabled, via a control panel or another mechanism. This front end determines which code paths are 
executed for specific customer segments in the running system. 

 

 

 

 

 

 

 

 

 

 

 

 
While you can build your own feature flag control system, there are several platforms and services available that provide this functionality. LaunchDarkly is 
the most commonly recommended, including by Atlassian and Microsoft. 

https://launchdarkly.com/
https://www.atlassian.com/continuous-delivery/principles/feature-flags
https://learn.microsoft.com/en-us/devops/operate/progressive-experimentation-feature-flags


 PAGE 8 OF 9 

DIAGRAM 10: A BPMN DIAGRAM BEING EDITED IN DRAW.IO 

WHY EXPLAIN USING DIAGRAMS? 

Humans process visual information faster and more easily than text explanations. Software development has many difficult concepts and complex processes, 
therefore, it is easier to understand when visualised. 

Most of the web resources covering feature flag DevOps are pure text explanations. These aren’t helpful when trying to convince a time-poor and less 
technical audience, such as those in management, the value of a change to an existing development process. It’s faster and easier to explain with the help of 
diagrams. 

All the diagrams in this document were created with draw.io using our online diagramming app at app.diagrams.net and its built-in shape libraries. 

DIFFERENT TYPES OF DIAGRAMS 

Teams from different departments need a variety of diagrams for various purposes - training, documentation, planning, presentations, project tracking, and 
so on. 

 With draw.io, you can draw an extensive range of diagrams.  

From highly technical UML software specifications, cloud infrastructures, 
user flows, and interface mock-ups, through to whiteboard sketches, 
customer analyses, business processes and educational infographics, you 
can draw whatever you need. 

Please see our gallery of example diagrams for more inspiration. 

  

https://app.diagrams.net/
https://drawio.com/example-diagrams.html


 PAGE 9 OF 9 

DIAGRAM 11: ANNOTATING AN AWS NETWORK DIAGRAM WITH A FREEHAND 
SHAPE IN A TEAM MEETING USING DRAW.IO AS AN ONLINE WHITEBOARD  

 

In addition to the vast shape library and built-in templates, you can create 
your own shapes, edit connection points on existing shapes, and draw 
freehand shapes. 

Teams can work together on the same diagram with shared cursors for 
seamless remote collaboration. 

You can also automatically generate diagrams from text - PlantUML, 
Mermaid, CSV, SQL, and more.  

To diagram faster, you can customise the editor to use your preferred 
styles, fonts, and colours. 

START DIAGRAMMING TODAY 

Anyone can use our free web application at app.diagrams.net or download the draw.io desktop app (Linux, Microsoft and macOS) to diagram offline. 

As diagrams.net is open source, there are integrations available for many third-party platforms, in addition to our own extensions for Microsoft, Google and 
Atlassian products. 

Your diagram data is secure - you choose which cloud storage platform or device to use to save your diagram files. No account is needed to view or work with 
your diagrams. 

Visit drawio.com to learn more. 

https://app.diagrams.net/
https://get.diagrams.net/
http://drawio.com/integrations.html
https://office.diagrams.net/
https://gsuite.diagrams.net/
https://marketplace.atlassian.com/apps/1210933/draw-io-diagrams-whiteboards
https://drawio.com/

	What do feature flags do?
	Granular control after deployment

	Gitflows to visualise development structure
	Implementing feature flags in deployment and development
	Controlling and toggling features

	Why explain using diagrams?
	Different types of diagrams
	Start diagramming today



